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1. INTRODUCTION

The MPACT code is a high-fidelity light-water reactor analysis code using whole-core pin-resolved neutron
transport calculations on modern parallel-computing hardware [1].

MPACT uses the 2D/1D method to solve 3D neutron transport problems by decomposing the problem into
a stack of 2D slices, each of which is solved independently using the method of characteristics (MOC). The
slices are then coupled axially using the P3 nodal expansion method (NEM-P3) for the 1D axial
calculations. MPACT also employs the coarse mesh finite difference (CMFD) method to accelerate
calculations.

This manuscript details work supporting advanced reactor designs using hexagonal pins and hexagonal
assemblies such as the VVER-1000. If performed correctly, MOC is geometry agnostic. However, MPACT
previously had optimizations in place for Cartesian geometries, specifically in the modularization and
current calculations.

Sections 2. and 3. detail the changes made to MPACT to support MOC and CMFD calculations on
hexagonal geometries. Section 4. reports results demonstrating solution consistency for problems run with
and without CMFD acceleration, results demonstrating solution consistency when run in serial and parallel,
and pincell results using the Monte Carlo code, McCard’s benchmark results [2].
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2. MODULARIZATION OF HEXAGONAL GEOMETRIES

MPACT takes advantage of the often repeated geometry of light-water reactors by ray tracing over
modules. Modules are subdomains that exhibit a unique geometry. With small adjustments to ray spacing
and angle, the modularization process can ensure that rays traced on modules link across the entire domain
for each angle. Figure 1 [3] shows nine modules, each of which has modular rays that link across the
module boundaries to form long rays across the problem domain.

Figure 1. The modules, modular rays, and long ray with Cartesian modules in MPACT.

Modular rays are determined based on the desired ray spacing and set of angular directions. This process
differs when using cartesian or hexagonal modules, so only the hexagonal modularization technique is
discussed in this report.

2.1 HEXAGONAL MODULARIZATION IN MPACT

Figure 2 shows the the MPACT hexagonal module with the X, U, and P, sides labeled. It follows that:

• X: North/south faces

• U: East-south-east (ESE)/west-north-west (WNW) faces

• P: East-north-east (ENE)/west-south-west (WSW) faces
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Figure 2. The hexagonal module in MPACT with the X, U, and P sides labeled.

The hexagonal modularization process in MPACT is influenced by previous work performed in the
DeCART code [4]. The goals of modularization on hexagonal geometries are as follows:

1. Calculate adjusted angles and ray spacing on the sixth space (0◦, 60◦) that allow for rays to be linked
across modules for each angle,

2. Expand the adjusted set of angles to the half space (0◦, 180◦) so that each angle has a reflected angle
for the X, U, and P in the set.

Both codes begin the modularization process given a set of angles α̃ < 60◦ and desired ray spacing ∆Ã.
Eqs. 1, 2, and 3 use this information to calculate the number of ray intersections on the X, U, and P sides:

NX = CEIL[sin(α̃)
L

∆Ã
], (1)

NU = CEIL[sin(60◦ − α̃)
L

∆Ã
], and (2)

NP = NX + NU , (3)

where L is the side length of the regular hexagonal module, and CEIL is the ceiling function that rounds to
the nearest integer greater than or equal to its argument.

Using NX and NU , Eqs. 4 and 5 are used to calculate an adjusted ray angle α and ray spacing ∆A that
satisfy that modularity condition:

tanα =

√
3

2(NU/NX) + 1
, and (4)

∆A =
L sinα

NX
. (5)

3



.

The calculation of the number of ray intersections on the X, U, and P sides, as well as the calculation of the
modularized angles in (0, 60◦) and ray spacing, all mirror DeCART [4] exactly. This part of the
modularization process ensures that rays for a given angle can be linked across modules.

The expansion of the angle set from (0, 60◦) to (0, 180◦) deviates from DeCART. Given a set of
modularized angles from (0, 60◦), we define a few parameters:

• naz = the number of azimuthal angles on the halfspace (0, 180◦),

• naz,hex = the number of azimuthal angles on the sixth space (0, 60◦),

• angles = an array storing the the angles on the halfspace (size naz), and

• angleshex = an array storing the adjusted angles on the sixth space (size naz,hex),

Algorithm 1: Angular Expansion

for i=1,naz,hex do
angles(i) = angleshex(i)
angles(i + naz,hex) = angleshex(i) + 60◦

angles(i + 2 · naz,hex) = 180◦ - angleshex(naz,hex - i + 1)
end

Algorithm 1 shows how angles are expanded to meet the reflection requirement. Using Algorithm 1 allows
the number of ray intersections to be established in the second (60◦, 120◦) and third (120◦, 180◦) angular
sextants based on the number of ray intersections calculated for the first angular sextant (0, 60◦).

Calculating the ray intersections using the expanded adjusted angles and Eqs. (1–3) leads to erroneous NX ,
NU , and NP values for angles in the second and third angular sextants. These values do not meet the
reflection capability. This is because Eqs. (1–3) calculate the ray crossings prior to the adjustment of the
angles. However, the NX , NU , and NP values from the first angular sextant can be used to calculate the
number of ray crossings of its corresponding expanded angle in the second and third angular sextants.

For an angle in the second angular sextant:

NX2 = NP1 ,

NU2 = NX1 ,

NP2 = NU1 , , (6)

where NP1 is the number of rays crossing the P surface for an angle in the first sextant, and NX2 is the
number of rays crossing the X surface for the corresponding angle in the second angular sextant.

For an angle in the third angular sextant:

NX3 = NU1 ,

NU3 = NP1 ,

NP3 = NX1 . (7)

To demonstrate this, consider a case that has the following:
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• naz = 24

• naz,hex = 8

The third angle in the adjusted set on the first angular sextant, α3 = 19.11◦, calculated with NX = 3,
NU = 6, and NP = 9, is shown in Fig. 5.

Figure 3. The rays on a hexagonal module with α3 = 19.11◦,NX = 3,NU = 6,NP = 9.

Following Algorithm 1, the corresponding angle in the second angular sextant is the 11th angle of the set,
α11 = 79.11◦. Using Eq. (6), we calculate NX = 9, NU = 3, and NP = 6, shown in Figure 4.

Figure 4. The rays on a hexagonal module with α11 = 79.11◦,NX = 9,NU = 3,NP = 6.

Following Algorithm 1, the corresponding angle in the third angular sextant is the 19th angle of the set,
α19 = 139.11◦. Using Eq. (7), we calculate NX = 6, NU = 9, and NP = 3, shown in Figure 4.
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Figure 5. The rays on a hexagonal module with α19 = 139.11◦,NX = 6,NU = 9,NP = 3.

Using α3, we check that the reflected angles meet the reflection capability for each face (equivalent number
of ray crossings for each reflected angle-pair). For the X face, α3’s reflected angle is α22, as shown Figs. 6a
and 6b. This reflected angle-pair meets the reflection capability with NX = 3 for both angles.

(a) α3 = 19.11◦ 0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Angle 22

(b) α22 = 160.89◦

Figure 6. α3 and α22 with equivalent NX = 3.

For the U face, α3’s reflected angle is α14, as shown in Figs. 7a and 7b. This reflected angle-pair meets the
reflection capability with NU = 6 for both angles.

6



(a) α3 = 19.11◦ 0 1 2 3 4
0.0

0.5

1.0
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3.5

4.0
Angle 14

(b) α14 = 100.89◦

Figure 7. α3 and α14 with equivalent NU = 6.

For the P face, α3’s reflected angle is α6, as shown in Figs. 8a and 8b. This reflected angle-pair meets the
reflection capability with NP = 9 for both angles.

(a) α3 = 19.11◦ 0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Angle 6

(b) α6 = 40.89◦

Figure 8. α3 and α6 with equivalent NP = 9.

With modular rays that meet the reflection capability for reflected angle-pairs and link across modules to
form core-long rays, MPACT can effectively perform the MOC sweep on hexagonal geometries. The next
step is to ensure that currents are being calculated correctly for CMFD acceleration.
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3. CURRENT CALCULATION FOR CMFD IN MPACT

The current contribution of a ray crossing a surface for an energy group and angle is calculated by Eq. (8):

~j += wtotal(ψforward − ψbackward), (8)

where ψforward/backward is the angular flux in the forward or backward direction of the ray, and ωtotal is the
weight assigned to that ray’s contribution to the net current on that surface. It is calculated as follows:

wtotal = dzdAwαπwθ sin(θ)SIGN(~n · ~Ω) (9)

~n · ~Ω = (Ωxnx + Ωyny + Ωznz)DirSign, (10)

where dA is the ray spacing, wα and wθ are angular quadrature weights, π is a normalizing factor, sin(θ)
projects the quadrature weights to the 2D plane, and DirSign is +1 for positive surfaces (N and E) and -1
for negative surfaces (S and W).

Consider the CMFD cell, ray, and two surfaces in Fig. 9.

• SIGN( ~Ω1 · ~n1), as calculated by Eq. (10), yields a value of -1, flipping ψbackward, or the inbound
angular flux, to the positive contribution to the net current.

• SIGN( ~Ω1 · ~n2), as calculated by Eq. (10), yields a value of +1, keeping ψforward, or the inbound
angular flux, as a positive contribution to the net current.

• SIGN( ~Ω2 · ~n3), as calculated by Eq. (10), yields a value of +1, keeping the outbound current
contribution positive.

• SIGN( ~Ω2 · ~n4), as calculated by Eq. (10), yields a value of -1, keeping the outbound current
contribution positive.

Figure 9. A Cartesian CMFD cell with two rays.

It follows that for “positive surfaces" (in Cartesian modules, this is the north and east surfaces), the
outbound current contribution should be positive, with the inbound current contribution negative, and for

8



“negative surfaces,” the inbound current contribution should be positive, with the outbound current
contribution negative.

3.1 CURRENT MPACT IMPLEMENTATION FOR HEXAGONAL CMFD CELLS

The current calculation for hexagonal CMFD cells maintains Eqs. (8), (9), and (10).

Figure 10 shows a hexagonal CMFD cell with two rays crossing four surfaces.

Figure 10. A hexagonal CMFD cell with two rays.

• SIGN(Ω1 · n1), as calculated by Eq. (10), is +1, keeping the outbound current contribution positive,
which matches Cartesian behavior for a positive surface.

• SIGN(Ω1 · n2), as calculated by Eq. (10), is +1, keeping the inbound current contribution positive,
which matches Cartesian behavior for a negative surface.

• SIGN(Ω2 · n3), as calculated by Eq. (10), is -1, making the outbound current contribution (ψbackward)
positive, which matches Cartesian behavior for a positive surface.

• SIGN(Ω2 · n4), as calculated by Eq. (10), is -1, making the inbound current contribution (ψbackward)
positive, which matches Cartesian behavior for a negative surface.

Some simple checks can be performed to build confidence in the current calculation on hexagonal
geometries for use in CMFD acceleration. CMFD is only an accelerator, so the solution for a problem
should be almost equivalent, regardless of whether or not CMFD is used.

9



4. RESULTS

To test the hexagonal geometry in MPACT, the following are checked:

1. Solution consistency for problems run with and without CMFD, both in serial and parallel, and

2. The ke f f of the VVER-1000 fuel pin benchmark [2].

4.1 SOLUTION CONSISTENCY

Figure 11 shows the problem that was used to test solution consistency for serial runs with and without
CMFD acceleration and parallel runs with and without CMFD acceleration. The parallel cases were run
with 12 message-passing interface (MPI) processors using spatial decomposition.

Figure 11. The problem geometry used to test solution consistency for serial and parallel runs with
and without CMFD acceleration.

Table 1 demonstrates the consistency between serial cases with and without CMFD and parallel cases with
and without CMFD acceleration. The serial MOC-only case is used as the reference solution.
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Table 1. The test problem (Fig. 11) results run with serial MOC, serial MOC with CMFD
acceleration, parallel MOC, and parallel MOC and CMFD.

Case ke f f ∆ke f f (pcm) Pin Power % RMS Pin Power %Max
Serial MOC Only 1.2706401 0.0 0.0 0.0

Serial MOC+CMFD 1.2706422 0.165 1.76E-05 3.88E-05
Parallel MOC Only 1.2706396 0.039 7.82E-06 1.90E-05

Parallell MOC+CMFD 1.2706420 0.150 8.30E-06 2.34E-05

Figures 12a–12d plot the thermal fluxes for the cases tabulated in Table 1.

(a) Serial MOC only (b) Serial MOC with CMFD acceleration

(c) Parallel MOC only (d) Parallel MOC with CMFD acceleration

Figure 12. The thermal flux of the test cases run on Fig. 11 and tabulated in Table 1.
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4.2 PINCELL SOLUTION VERIFICATION

The VVER-1000 fuel pin (shown in Fig. 13 was used to test MPACT’s solutions on hexagonal geometry,
and the continuous-energy Monte Carlo code McCard’s solutions were used as the reference solution [2].
Each case was run with 36 azimuthal angles from (0,180◦), 3 polar angles from (0,90◦), and a ray spacing
of 0.01 cm. Dimension, material composition, and case details can be found in the benchmark document
[2].

Figure 13. The VVER-1000 fuel pin geometry.

Table 2 tabulates the MPACT and McCard ke f f and the differences in their reactivities. The maximum
reactivity difference is in case A01V15, and the minimum reactivity difference is in case A01V07. Case
A01V15 is the fuel pin problem with 2,000 ppm soluble boron in the water, 2.0 weight percent 235U, and
the fuel, clad, and moderator temperatures at 600 K. Case A01V07 is the fuel pin problem with 1000 ppm
soluble boron in the water, 2.0 weight percent 235U, and the fuel, clad, and moderator temperatures at
300 K. Some discrepancy is expected, as the deterministic MOC and the stochastic Monte Carlo method
are two different paths to solutions. However, for cases that exhibit larger discrepancies, some analysis can
be done.
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Table 2. The VVER fuel pin results from MPACT using McCard as a benchmark.

Case MPACT ke f f McCard ke f f ∆pcm
A01V01 1.276383 1.27732 73.36
A01V02 1.386073 1.38673 47.38
A01V03 1.211521 1.20996 -129.01
A01V04 1.307009 1.30515 -142.44
A01V05 1.200377 1.19902 -113.18
A01V06 1.295207 1.29376 -111.84
A01V07 1.074295 1.07433 3.26
A01V08 1.212733 1.21253 -16.74
A01V09 1.078295 1.07644 -172.33
A01V10 1.196971 1.19512 -154.88
A01V11 1.068443 1.06691 -143.69
A01V12 1.186258 1.18466 -134.89
A01V13 0.931487 0.93106 -45.86
A01V14 1.081247 1.08058 -61.73
A01V15 0.974415 0.97225 -222.68
A01V16 1.106239 1.10418 -186.47
A01V17 0.965599 0.96386 -180.42
A01V18 1.096441 1.09463 -165.44

Figure 14 plots the absolute value of the discrepancy (∆pcm) against the fuel temperature, clad
temperature, and moderator temperature, and ppm of soluble boron for all the cases run. The largest trend
in discrepancy between MPACT and McCard appears to be when materials are at 600 K, and to a slightly
lesser extent, 900 K. Possible factors could be MPACT’s cross section data at higher temperatures or
differences in mesh resolution in fuel, water, and clad between the two code cases. Future work will
explore these possibilities to improve understanding of the differences.
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Figure 14. The reactivity discrepancy between MPACT and McCard plotted as functions of fuel
temperature, clad temperature, moderator temperature, and ppm boron.

4.3 PRELIMINARY 2D/1D RESULTS

Preliminary testing has been performed on 2D/1D test cases. Figure 11 is extruded, and multiple axial
slices were run, reflecting boundary conditions on the top and bottom faces. Theoretically, the 2D and
2D/1D representations of the problem should yield the same ke f f . Table 3 shows the expected consistency
in ke f f .

Table 3. Test problem (Fig. 11) results run with serial MOC, serial MOC with CMFD acceleration,
parallel MOC, and parallel MOC and CMFD.

Case ke f f ∆ke f f (pcm)
1 axial slice 1.2706422 0.0
4 axial slices 1.2706420 0.015
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